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Abstract. A huge and dangerous flood occurred in September 2024 in the upper and middle Odra river 12 

basin, including mountainous areas in south-western Poland. The widespread precipitation lasted about 13 

four days, reaching more than 200 mm daily. In order to verify the possibilities of precise estimation of 14 

the precipitation field, different measurement techniques were analysed: rain gauge data, weather radar-15 

based, satellite-based, non-conventional (CML-based) and multi-source estimates. Apart from real-time 16 

and near real-time data, later available reanalyses based on satellite information (IMERG, PDIR-Now) 17 

and numerical mesoscale model simulations (ERA5, WRF) were also examined. Manual rain gauge data 18 

for daily accumulations and multi-source RainGRS estimates for hourly accumulations were used as 19 

references to evaluate the reliability of the various techniques for measurements and estimation of 20 

precipitation accumulations. Statistical analyses and visual comparisons were carried out. Among the 21 

data available in real time the best results were found for rain gauge measurements, radar data adjusted 22 

to rain gauges, and RainGRS estimates. Fairly good reliability was achieved by non-conventional CML-23 

based measurements. In terms of offline reanalyses, mesoscale model simulations also demonstrated 24 

reasonably good agreement with reference precipitation, while poorer results were obtained by all 25 

satellite-based estimates except the IMERG. 26 

1. Introduction 27 

1.1. Motivation 28 

Precipitation is one of the most important meteorological parameters. In the case of extreme 29 

weather events, precise estimation of the precipitation field with high spatial resolution, preferably 30 

carried out in real-time, is of crucial importance for effective flood protection (Sokol et al., 2021; 31 

Velásquez et al., 2025), especially in mountainous regions. The accurate determination of precipitation 32 

amounts is also important for subsequent studies and expert opinions. In this context, the following 33 

question arises: Are we able to measure precipitation with sufficient reliability to carry out these tasks? 34 
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The ability to estimate precipitation either in real time or in near real time (i.e. with a delay of up to 35 

several minutes, half an hour at most) is crucial, but data available afterwards for detailed analysis are 36 

also valuable. 37 

Knowledge of the high-resolution spatial distribution of precipitation in real time provides the 38 

basis for generating forecasts with high resolution in time and space. Based on an extrapolation approach, 39 

nowcasting models (very short-range forecasting) generate such forecasts with very high precision but 40 

with a relatively short lead-time (Bojinski et al., 2023). This is particularly important when monitoring 41 

and forecasting severe convective phenomena (Fischer et al., 2024) for effective flood protection. 42 

The main problem in analysing the accuracy of such forecasts is the lack of a reliable reference 43 

with a sufficiently high spatial and temporal resolution. Such a reference could be the most reliable 44 

measurements or re-analyses available offline. Manual rain gauge measurements, which are most often 45 

available in the form of daily accumulations, are usually used as a reference for other measurements and 46 

estimates (e.g. Hoffmann et al., 2016). However, rain gauges only provide point measurements, making 47 

spatial representation of precipitation highly dependent on network density. In the case of a sparse 48 

network and highly spatially variable precipitation, its accurate reconstruction becomes nearly 49 

impossible. Therefore, it is necessary to carry out various comparative analyses using all available 50 

measurement and estimation techniques to select optimal solutions. 51 

 52 

1.2. State of the art 53 

1.2.1. High-resolution measurements of precipitation during extreme weather events 54 

In the operational practice of the National Meteorological and Hydrological Services (NMHSs), 55 

the most commonly used rainfall measurement techniques are in-situ measurements made with various 56 

types of rain gauges, weather radar observations, and satellite-derived estimates. These measurements 57 

vary in spatial resolution, technical limitations, and sensitivity to various disturbing factors, and 58 

consequently, measurement errors have a completely different structure. 59 

Rain gauges measure rainfall point-wise, i.e. only at their locations, and their reliability is affected 60 

by various factors related to meteorological conditions as well as to the failure rate and precision of the 61 

measurement, which is dependent on their design. This technique is considered the most accurate of 62 

those currently in use, but only in respect of the measurement location. Primarily, in the case of sparse 63 

rain gauge networks, point measurements do not provide reliable precipitation fields with sufficiently 64 

high spatial resolution. One way to enhance the coverage of a given area with rain gauge measurements 65 

is to add data from personal weather stations (Garcia-Marti et al., 2023; Overeem et al., 2024). 66 

Weather radars measure the spatial distribution of the precipitation field with a very high 67 

resolution of the order of 1 km, which depends on the distance from the radar site. However, radar data 68 

is sensitive to a wide variety of disturbances, such as the interaction of the radar beam with the terrain 69 

and objects on it, varying signal propagation conditions, interference with signals from other devices 70 
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emitting microwave signals (e.g. RLAN transmitters) and many others. As a result, sophisticated quality 71 

control algorithms are necessary, although they are not completely effective. 72 

Operationally, the least reliable methods are those based on satellite imagery in the various spectral 73 

channels: microwave, which is the most technically challenging, as well as visible (VIS) and infrared 74 

(IR). Although satellite data are generally widely available, their reliability, except for microwave data, 75 

is relatively low, making them less commonly used in operational applications than rain gauge and radar 76 

data. In addition, their accuracy depends strongly on the season, time of day, and satellite location. A 77 

large number of satellite-based precipitation products have been designed using different spectral 78 

channels which are combined with other data, most commonly microwave active data from ground-based 79 

and satellite radars (e.g. GPM), microwave passive data from satellites in low polar orbits (e.g. NOAA, 80 

MetOp), and mesoscale numerical model forecasts. This created the need for several comparative studies 81 

that were carried out in Europe, despite their much lower usefulness here (see, for example: Jiang et al., 82 

2019; Navarro et al., 2020; Tapiador et al., 2020; Mahmoud et al., 2021; Peinó et al., 2025). 83 

Additionally, precipitation data may come from devices not originally designed for meteorological 84 

measurements. The most common instance uses signal attenuation measurements on commercial 85 

microwave links (CML) from mobile phone networks (van der Valk et al., 2024; Olsson et al., 2025). 86 

These data require sophisticated algorithms to convert the measurements to precipitation, but they can 87 

provide many times more data than rain gauge networks. In Europe, attempts are being made to use these 88 

data in real time (Overeem et al., 2016; Nielsen et al., 2024; Graf et al., 2020; 2024; Olsson et al., 2025) 89 

taking advantage of the fact that networks of these kinds of links are very dense, especially in urbanised 90 

areas. 91 

1.2.2. Multi-source estimates 92 

None of the measurement techniques described above demonstrates the ability to provide accurate 93 

precipitation estimation individually, but they are largely complementary. Considering that each has 94 

advantages and disadvantages, the idea is to combine data from different sources to improve the accuracy 95 

of rainfall estimation while maintaining high spatial resolution. Consequently, several merging methods 96 

have been developed to address the strengths and limitations of each measurement technique. They often 97 

include approaches based on conditional combinations of individual data (e.g., Sinclair and Pegram, 98 

2005; Jurczyk et al., 2020b), the Kalman filter, and various versions of Kriging, such as Kriging with 99 

external drift (Sideris et al., 2014). Machine learning techniques, such as XGBoost (Mai et al., 2022; 100 

Putra et al., 2024), have been increasingly used for this purpose. Most often the merging process involves 101 

data from rain gauge and radar techniques (e.g., Goudenhoofdt and Delobbe, 2009; Ochoa-Rodriguez et 102 

al., 2019; Wijayarathne et al., 2020), and less often from the three combined techniques of rain gauge, 103 

radar and satellite (e.g., Jurczyk et al., 2020b; Yu et al., 2020; Putra et al., 2024). 104 
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1.2.3. Estimates based on numerical models 105 

The surface or near-surface fields of precipitation simulated by numerical weather prediction 106 

(NWP) models are now frequently used for various purposes, including research of extreme precipitation 107 

events (Bližňák et al., 2022). Atmospheric reanalyses produced by NWP models with the assimilation of 108 

available historical observations can reconstruct past meteorological conditions. They provide physically 109 

consistent datasets of variables, including surface precipitation (Hersbach et al., 2020). The current NWP 110 

models are able to simulate intense precipitation, but the agreement with rain gauge observations is still 111 

not high in terms of spatial and temporal representation of precipitation (Bližňák et al., 2019). 112 

For the characterisation of precipitation patterns, it is possible to use precipitation simulations 113 

obtained from NWP models, such as the publicly available ERA5 of ECMWF reanalyses (e.g., Subba et 114 

al., 2024). Other high-resolution mesoscale models with open-access software, such as WRF (Weather 115 

Research and Forecasting) of NCAR (Tanessong et al., 2017; Skamarock et al., 2019), can also be used. 116 

A significant upside to using such a solution, even in areas with dense in situ measurement networks, is 117 

the easy access to the data and their convenient processing. 118 

1.2.4. Problems in the verification of precipitation measurements  119 

Although several methods for verifying precipitation data have been developed over the years 120 

(e.g., Rodwell et al., 2011; Szturc et al., 2022), this issue is still challenging (Skok, 2022; Zhang et al., 121 

2025). A fundamental problem in precipitation measurements is the considerable difficulty deriving 122 

information about precipitation on the ground surface, the so-called ground truth|. Therefore, empirical 123 

verification of different measurement or estimation techniques is generally carried out indirectly through 124 

their intercomparison during field experiments. This process often involves a somewhat arbitrary 125 

selection of the most reliable measurement data or estimates based on the experience of the researchers. 126 

Rain gauges, especially manual ones, are believed to provide direct and relatively accurate data from 127 

point rainfall measurements. Thus, they are often considered the ground truth source for verifying other, 128 

mostly grid-based rainfall products, such as radar and satellite-based, multi-source, or NWP model 129 

reanalyses (e.g., Militino et al., 2018). In a very sparse network of manual rain gauges, telemetric rain 130 

gauges can be used for this purpose, but only after advanced quality control. 131 

The problem of precipitation data verification is much more difficult in mountainous areas due to 132 

the more significant spatial variability of precipitation distribution, which is associated with complex 133 

terrain (Ouyang et al., 2021). This aspect should also be kept in mind when verifying different types of 134 

measurements (Merino et al., 2021). 135 

1.3. Objectives and structure of the paper 136 

The main objective of this work is to verify the real possibilities of precise estimation of a 137 

precipitation field with a high spatial resolution of about 1 km and a high temporal resolution of at least 138 
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10 min, or one hour during intense precipitation events that cause floods in mountainous regions. The 139 

analysis was carried out for an event in the Sudety mountains in Poland (Odra River catchment area) in 140 

September 2024. All available real-time and offline measurements and estimates were verified to 141 

determine their applicability and to quantify their reliability. 142 

The paper is organised as follows: after an introductory Section 1 outlining the issues of 143 

precipitation measurement and the various techniques used, Section 2 briefly describes the 2024 flood 144 

event and the area affected. Section 3 details the precipitation data used in this work, both available in 145 

real time and with a delay for a longer period. Section 4 presents the results of the statistical verification 146 

of the data obtained by the different techniques and outcomes of the comparative analyses. Section 5 147 

provides conclusions drawn from evaluating reliability of the investigated measurements and estimates. 148 

2. Flood in Poland in the Odra river basin in 2024 149 

2.1. Characteristics of the flooded area 150 

The Odra (or Oder) is the second largest river in Poland. It forms part of the central European 151 

drainage network. The river starts in the Sudety Mountains in the Czech Republic and flows north, 152 

mainly through Polish territory, to the Baltic Sea. The river’s total length is 855 km, and the maximum 153 

elevation in its basin is 1,602 m above sea level in the Sudety (Mount Śnieżka). After the Carpathian 154 

Mountains, the Sudety have Poland's highest annual precipitation accumulation. At the same time, the 155 

area is characterised by high precipitation variability due to the complex orography, the natural increase 156 

in precipitation intensity with altitude, and the occurrence of precipitation shadows in the lower parts of 157 

the mountains and valleys. 158 

 159 
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 160 
Figure 1.:The area of the upper and middle Odra river basin in Poland.  161 

 162 

The rivers draining the Sudety and its foothills are prone to dangerous floods that can occur after 163 

high precipitation. The Odra River basin is characterised by numerous left-bank short tributaries draining 164 

rainwater from the Sudety. Moreover, in the case of the Kłodzko Valley, there is a concentric system of 165 

river networks that favours the occurrence and dynamic of flood phenomena (e.g., Szalińska et al., 2014; 166 

Przebieg..., 2021).  167 

Rain-induced floods in the Odra river basin are usually associated with low-pressure frontal 168 

centres that reach Poland and cause prolonged and intense precipitation in southern Poland. In Poland, 169 

catastrophic rainfall floods occur most frequently just in the upper and middle Odra basin, with an area 170 

of approximately 44,000 km2 (Fig. 1), on average every 10-15 years. The last ones were recorded in 171 

1997, 2010, and 2024, and they were investigated in this study. 172 

The literature on analysing these floods is extensive, generally in Polish, but comprehensive 173 

English-language scientific studies can also be found. They address the subject from very different 174 

perspectives. Some studies cover a wider area than the Odra basin, e.g. the whole of Poland (Kundzewicz, 175 

2014 and other works by this author), central and eastern Europe (Bissolli et al., 2011), or the whole of 176 

central Europe (Mudelsee et al., 2004; Kimutai et al., 2024). Others describe and analyse in detail the 177 
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course of floods (precipitation and river flows) in specific catchments, e.g. the Odra River in Poland 178 

(Szalińska et al., 2014) or the Nysa Kłodzka River (Perz et al., 2023), which is an important tributary of 179 

the Odra River. Other work relates to climate change, which is believed to affect the course and intensity 180 

of floods and is responsible for increasing flood risk (Kundzewicz et al., 2023). Detailed statistical 181 

analyses of rainfall during floods have also been carried out (e.g. Mikolajewski et al., 2025). 182 

2.2. Description of the flood 183 

On 12-15 September 2024, the upper and middle Odra River basin and part of the upper Vistula 184 

River basin experienced rainfall that significantly changed the hydrological situation. From 12 185 

September 2024, intense rainfall began to appear in western Poland, with accumulations of up to 60 mm 186 

per 12 hours recorded in the Eastern Sudetes. The highest rainfall intensity occurred on consecutive days: 187 

from 13 September 2024 in the morning to 15 September 2024, before noon. The precipitation was 188 

associated with a low-pressure system named Boris by the national meteorological services of southern 189 

and central Europe.  190 

The daily precipitation accumulation in this period exceeded 200 mm, and its territorial range 191 

covered mainly the Eastern Sudetes. Four-day precipitation accumulation (Kimutai et al., 2024) reached 192 

values above 400 mm, with the highest in the Jeseníky and Śnieżnik Mountains. Estimates based on 193 

various measurement data suggest they might even have exceeded 550 mm. Apart from intense, 194 

widespread precipitation, numerous thunderstorms and several associated tornadoes were recorded 195 

during these days. On 16 September, rainfall began to diminish; mainly light to moderate precipitation 196 

was observed, and in the following days, the weather in Poland was influenced by a high-pressure system, 197 

with the advection of warm and dry air of continental origin.  198 

The consequence of the intensive rainfall was runoff of rainwater, high and extreme water levels 199 

in rivers, and flooding. The flood wave moved down the Odra River and its tributaries, causing numerous 200 

exceedances of warning and alarm levels.  201 

3. Data used for the flood monitoring and analyses 202 

3.1. The data used 203 

In the frame of this study, the input data used to retrieve the precipitation field (Table 1) are divided 204 

into two groups in terms of the delay in their availability: (i) in real time and near real time, (ii) not in 205 

real time (with a delay of more than 30 min). Among the latter, data from manual rain gauges (GAU 206 

manual), characterised by the highest reliability based on knowledge of measurement techniques and 207 

experience, were selected as reference data. All other precipitation products are verified by quantitative 208 

comparison with them. 209 

  210 
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Table 1. High-resolution techniques for measurement and estimation of the precipitation field. 211 

Abbreviation Description 
Temporal 

resolution 
Spatial resolution Timeliness 

Reference data 

GAU Manual Data from manual rain gauges (Hellmann’s type) 24 h Point wise 2 months 

Data available in real time 

GAU Interpolated data from telemetric rain gauges 10 min 1.0 km 6 min 

RAD Weather radar data from POLRAD and 

neighbouring countries 

5/10 min 0.5/1.0 km 4 min 

RAD Adj Weather radar data from POLRAD and 

neighbouring countries adjusted to telemetric rain 

gauge data 

5/10 min 0.5/1.0 km 7 min 

SAT Satellite-based precipitation – combination of 

EUMETSAT NWC SAF products 

5/10 min Roughly 5-6 km for 

Poland 

4 min 

H61B Satellite-based precipitation – MW-IR combination 

(EUMETSAT H SAF product) 

1, 24 h Roughly 5-6 km for 

Poland 

5-10 min  

CML Interpolated estimates based on signal attenuation 

in commercial microwave links 

15 min 1.0 km Tests in progress 

(currently offline) 

GRS Multi-source estimates from RainGRS system 10 min 1.0 km 7 min 

Data available not in real time (offline) 

GRS Clim Multi-source reanalyses from RainGRS adjusted to 

manual rain gauges 

24 h 1.0 km 2 months 

IMERG Satellite-based precipitation estimates of NASA, 

final analyses (IMERG Final) 

30 min 0.1º x 0.1º About 4 months 

PDIR-Now Satellite-based precipitation estimates of 

University of California, Irvine 

1 h 0.04º x 0.04º 30-60 min 

ERA5 ECMWF reanalyses (NWP-based estimates) 1 h 0.25° x 0.25°* 5 days 

WRF WRF reanalyses (with initial conditions from 

ICON model) 

1 h 1.0 km (settable) 4.5 h 

* Roughly 18 km x 26 km. 212 

3.2. Operational data available in real time 213 

All measurement data require quality control (QC) employing adequately designed systems, which 214 

are often very sophisticated (Szturc et al., 2022), especially for weather radar data. These systems are 215 

dedicated to verifying the data and, if necessary, correcting them. Using different precipitation 216 

information and a cross-check approach in a QC scheme is a common practice. 217 
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3.2.1. Rain gauge measurements 218 

The network of telemetric rain gauges of IMGW – the NMHS in Poland – consists of about 650 219 

stations, mainly of the tipping bucket type. There are 158 stations in the area analysed in this work (Fig. 220 

2), which gives an average of one rain gauge per approximately 280 km2. This network is much denser 221 

in the mountains, including the Sudety than in other parts of the country, with one station per 222 

approximately 420 km2. 223 

Precipitation measurements are transmitted in the form of 10-minute accumulations. Additionally, 224 

analogous data from the Czech Republic (CHMU – the Czech NMHS) from gauges near the Polish 225 

border are also operationally available. All data are subject to quality control by the RainGaugeQC 226 

system developed at IMGW (Ośródka et al., 2022; 2025). The point measurements are interpolated using 227 

the Ordinary Kriging method to obtain a precipitation field with 1-km resolution. 228 

 229 

 230 
Figure 2: Locations of telemetric rain gauges (blue dots) in the upper and middle Odra River basin, meteorological 231 
radars (brown triangles) covering this basin, and four manual rain gauges selected for more detailed analysis (larger 232 
blue dots). 233 

 234 

3.2.2. Weather radar measurements 235 

POLRAD, IMGW’s weather radar network, consists of 10 C-band, Doppler and polarimetric 236 

radars manufactured by Leonardo Germany. The network is supplemented by data from 10 radars from 237 

neighbouring countries, whose observations partially cover the territory of Poland (Fig. 2). The radar 238 

data are quality controlled with the RADVOL-QC system designed at IMGW (Ośródka et al., 2014; 239 

Ośródka and Szturc, 2022). The precipitation composite maps are generated based on the PseudoSRI 240 

products from individual radars with a merging algorithm that considers a combination of data quality 241 

https://doi.org/10.5194/egusphere-2025-1863
Preprint. Discussion started: 19 May 2025
c© Author(s) 2025. CC BY 4.0 License.



10 

 

information and distance from the radar site (this was also developed at IMGW, Jurczyk et al., 2020a). 242 

The spatial resolution of the final field is 1 km x 1 km, and the temporal resolution is 10 min. 243 

However, it should be noted that radar estimates of precipitation in mountainous areas are usually 244 

less reliable due to disturbances arising from the interaction of the radar beam with the terrain. Therefore, 245 

algorithms for the adjustment of radar-based precipitation with rain gauges are becoming more 246 

important. A mean-field bias correction is carried out individually for each radar based on a 10-min 247 

accumulation. Then, the spatial adjustment is performed based on a comparison of past radar estimates 248 

with corresponding rain gauge data to handle non-uniform bias within the radar composite domain 249 

(Jurczyk, 2020b). 250 

 The flooding area is within the range of five Polish radars, three located in the upper and middle 251 

Odra river basin – Pastewnik (PL_PAS), Góra św. Anny (PL_GSA) and Ramża (PL_RAM), and in its 252 

vicinity – Poznan (PL_POZ) and Brzuchania (PL_BRZ). Moreover, two German radars, Protzel 253 

(GE_PRO) and Dresden (GE_DRE), and one Czech radar, Skalky (CZ_SKA), partially cover the basin 254 

area. 255 

3.2.3. Satellite measurements and estimations 256 

Satellite precipitation fields for Europe are based primarily on data from geostationary 257 

meteorological satellites of the Meteosat family, which are positioned over the equator at various 258 

longitudes. They are an important source of operational data due to their very high temporal resolution 259 

of 5 minutes and quick access of a few minutes. Their spatial resolution, which for the area of southern 260 

Poland is approx. 5-6 km, is also relatively high in terms of satellite data.  261 

Depending on the availability of additional data, it is possible to generate different satellite-based 262 

estimates in real time or in near real time, such as precipitation fields based on products generated by 263 

software developed by EUMETSAT programmes. IMGW operationally uses products generated by the 264 

software of the EUMETSAT NWC SAF (2021) programme from the visible (daytime CRR-Ph and PC-265 

Ph products) and infrared (24-hour CRR and PC) data. On this basis, 10-min precipitation accumulation 266 

fields are estimated by IMGW software (Jurczyk et al., 2020b). These data are corrected by mean field 267 

bias with radar precipitation adjusted to rain gauge measurements. The H61B precipitation product of 268 

the EUMETSAT H SAF (2020) programme is also available, which, unlike the SAT product, is based 269 

only on data from the IR channel available 24 hours a day but is supplemented with observations from 270 

passive microwave sensors located on various meteorological satellites in low polar orbits. 271 

3.2.4. Other estimates 272 

Measurements of signal attenuation on commercial microwave links (CMLs) allow the calculation 273 

of the integrated precipitation along a given link with a length of several to tens of kilometres. The 274 

precipitation is spatially distributed along the link in proportion to the distribution of weather radar 275 

(RAD) precipitation along this distance (Pasierb et al., 2024). Although the differences were 276 
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insignificant, this approach proved the best when comparing the results obtained by various tested 277 

methods with reference precipitation. There are 400 such links in the area analysed in this study (Fig. 3), 278 

which gives an average of one link per around 100 km2. 279 

 280 

 281 
Figure 3: Locations of commercial microwave links (black lines) in the upper and middle Odra River basin and four 282 
manual rain gauges selected for more detailed analysis (larger blue dots). 283 

 284 

The CML-based 15-minute precipitation accumulations are spatially interpolated using inverse 285 

distance methods to obtain high-resolution 1 km x 1 km precipitation fields. The data are currently being 286 

tested at IMGW for their applicability to real-time operational applications. 287 

3.2.5. Multi-source estimates 288 

The RainGRS model combining rain gauge, radar and satellite precipitation data is used 289 

operationally at IMGW (Jurczyk et al., 2020b), applying a conditional merging technique that is a 290 

development of the Sinclair and Pegram (2005) algorithm. This method is enhanced by involving detailed 291 

quality information assigned to individual input data. The combination algorithm is divided into two 292 

stages. At first, rain gauge data are merged with radar and satellite estimates separately, taking into 293 

account their quality. Finally, the resulting two precipitation fields are combined using weights 294 

depending on the distance from the nearest radar site and the quality of the satellite precipitation. As a 295 

result, a multi-source gauge-radar-satellite field (GRS) is received, with a spatial resolution of 1 km x 1 296 

km and a temporal resolution of 10 min. 297 
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3.3. Estimates not available in real time 298 

3.3.1. Manual rain gauge measurements 299 

 300 
Figure 4: Locations of manual rain gauges (blue dots) in the upper and middle Odra River basin and four manual rain 301 
gauges selected for more detailed analysis (larger blue dots). 302 

 303 

The IMGW network of manual rain gauges consists of about 641 stations. Their operation involves 304 

employing a graduated cylinder from which the observer reads the height of the rainwater column. In 305 

Poland, such gauges are used in the Hellmann standard, however, their measurements have some 306 

limitations: (i) they are point wise, (ii) they have relatively long precipitation accumulation times of, 307 

most often, 24 hours, (iii) they require measurement processing (including quality control), so they are 308 

not available in real time. The data from manual rain gauges are the closest to reality, therefore they are 309 

selected as reference for the 2024 flood. There are 112 such stations in the area analysed in this study 310 

(Fig. 4), one rain gauge per approximately 395 km2. 311 

3.3.2. Multi-source GRS Clim reanalyses 312 

RainGRS Clim is an extension of the RainGRS system, with the implementation of manual rain 313 

gauge measurements as an additional source of precipitation information (Jurczyk et al., 2023). The data 314 

are incorporated into the GRS Clim estimates through adjustments carried out in a spatially distributed 315 

manner. Thanks to the application of observations from the gauges, which are considered most 316 

trustworthy, the reliability of the climate multi-source estimates is significantly increased. However, the 317 

products are only available after a longer period of approximately two months, due to the verification of 318 

the manual rain gauge data. This also involves reducing the temporal resolution of the final estimates to 319 

one day, but the spatial resolution remains the same (1 km x 1 km). 320 
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3.3.3. Satellite-based reanalyses 321 

Satellite-based reanalyses use additional information, especially from satellites on polar low Earth 322 

orbits, beyond what is available from geostationary satellites, and this improves their reliability. 323 

However, this requires more time to acquire and process data, so the delay in access to the estimates in 324 

such cases can be as long as several months (Berthomier and Perier, 2023). 325 

The Integrated Multi-satellitE Retrievals for GPM (IMERG) is a NASA product estimating global 326 

surface precipitation rates at a spatial and temporal resolution of 0.1° x 0.1° and 30 min, respectively 327 

(https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGHH_07/summary?keywords=%22IMERG%20final328 

%22). This product uses Global Precipitation Measurement (GPM) satellite data as a baseline and inter-329 

calibrates. It combines them with other observations from international satellite constellations (from 330 

space-based radars, passive microwave and infrared sensors) and data from rain gauges (Huffman et al., 331 

2020; Bogerd et al., 2021). IMERG has three runs with different delays: Early (4-hour delay), Late (14-332 

hour) and Final (about 4 months). 333 

The PERSIANN Dynamic Infrared Rainfall Rate Near Real-Time (PDIR-Now) is a global, high-334 

resolution (0.04° x 0.04°) satellite-based precipitation estimation product developed by the University of 335 

California, Irvine (UCI) (Nguyen et al., 2020a; 2020b; Afzali Gorooh et al., 2022) 336 

(https://persiann.eng.uci.edu/CHRSdata/PDIRNow/PDIRNow1hourly/). It is based on high-frequency 337 

sampling of infrared imagery and has a timeliness of 30-60 minutes. PDIR-Now considers errors due to 338 

the use of IR imagery by applying various techniques, including dynamic curve shifting (Tb-R) based 339 

on precipitation climatology. Its highest temporal resolution is 1 hour. 340 

3.3.4. Reanalyses of the NWP models 341 

The ERA5 fields (ECMWF Reanalysis v5) generated by the ECMWF (European Centre for 342 

Medium-Range Weather Forecasts) have a low resolution of 0.25° x 0.25°, which converted to distance 343 

units corresponds to grids of approximately 18 km x 26 km in Poland 344 

(https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=download). This makes it 345 

impossible to use these reanalyses when knowledge of the course of convective phenomena at the 346 

microscale is needed, i.e. with a spatial resolution of 1 km or less. However, a general offline analysis of 347 

short-lived meteorological phenomena is possible. 348 

The WRF (Weather Research and Forecasting) is a model developed at NCAR (National Center 349 

for Atmospheric Research, USA). Initial conditions for simulations of precipitation during the flood 350 

analysed here were taken from the ICON-EU (Icosahedral Nonhydrostatic) model (6.5 km) developed at 351 

Deutscher Wetterdienst (German NMS, 352 

https://www.dwd.de/EN/research/weatherforecasting/num_modelling/01_num_weather_prediction_mo353 

dells/icon_description.html). Simulations were conducted at 50 vertical levels up to 50 hPa, with a 354 

horizontal resolution of 1 km and a time step of 1 hour. Thompson’s microphysics scheme (Thompson 355 

et al., 2004) was utilised in the simulations. Due to the high resolution of the computational domain, 356 
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explicit wet process physics was implemented, along with the parameterisation of short-wave and long-357 

wave radiation based on the RRTMG radiation propagation scheme, a newer version of RRTM (Iacono 358 

et al., 2008). Boundary layer processes were modelled according to the Mellor-Yamada-Nakanishi-Niino 359 

(MYNN) turbulence scheme with closure 2.5 (Nakanishi and Niino, 2009). The near-surface layer was 360 

parameterised using the MYNN scheme (Nakanishi and Niino, 2006). The multi-physics Noah land 361 

surface model (Niu et al., 2011) predicts soil moisture and temperature at four depths (Jarvis, 1976). 362 

4. Reliability analysis of different techniques of precipitation measurement and estimation 363 

4.1. Methodology for verifying precipitation data 364 

The basic analyses were carried out for 1-day accumulations with reference data from manual rain 365 

gauges (GAU Manual), which were treated as the most reliable. These measurements are point wise, so 366 

verification of individual precipitation fields was performed only at the locations of these stations. The 367 

data were from 13-16 September 2024, but at IMGW, measurements of meteorological daily 368 

precipitation are made at 6 UTC, i.e. the accumulation for a given day is summed from 6:00 UTC of the 369 

previous day to 6:00 UTC of the following day and assigned to the date on which the accumulation 370 

ended. Thus, the period analysed included precipitation from 6 UTC 12 September to 6 UTC 16 371 

September. 372 

The temporal distribution of heavy precipitation plays a key role, so the data available with a 1-373 

hour time step was also verified. As measurements from manual rain gauges are not available at such a 374 

short time step, the RainGRS (GRS) fields were used as a benchmark for the verification. In this case, it 375 

was possible to conduct a spatial verification because the reference was data with a resolution of 1 km x 376 

1 km. However, it should be noted that the GRS estimates depend on some of the verified data (GAU, 377 

RAD, RAD Adj, and SAT). 378 

The following metrics were employed: 379 

‒ Pearson correlation coefficient is a well-known metric which is sensitive to a linear relationship 380 

between two datasets and reflects agreement between estimate and reference in terms of spatial 381 

pattern: 382 

 383 

CC =
∑ (𝐸𝑖−𝐸)
𝑛
𝑖=1 (𝑂𝑖−𝑂)

√∑ (𝑂𝑖−𝑂)
2𝑛

𝑖=1 ∑ (𝐸𝑖−𝐸)
2𝑛

𝑖=1

    (1) 384 

 385 

‒ root mean square error based on variance is a standard metric used in verification studies as a 386 

good measure of differences between the verified and reference values: 387 

 388 

RMSE = √
1

𝑛
∑ (𝐸𝑖 − 𝑂𝑖)

2𝑛
𝑖=1     (2) 389 
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 390 

‒ root relative square error is similar to RMSE, but it is scale-independent: 391 

 392 

RRSE =
√∑ (𝐸𝑖−𝑂𝑖)

2𝑛
𝑖=1

√∑ (𝑂𝑖−𝑂)
2𝑛

𝑖=1

     (3) 393 

 394 

‒ statistical bias, which is a measure of systematic error: 395 

 396 

Bias =
1

𝑛
∑ (𝐸𝑖 −𝑂𝑖)
𝑛
𝑖=1      (4) 397 

 398 

where 𝐸𝑖 is the estimated value, 𝑂𝑖 is the reference value, 𝑖 is the gauge/pixel number, and 𝑛 is the 399 

number of gauges/pixels, whereas 𝐸 and 𝑂 are the mean values of 𝐸𝑖 and 𝑂𝑖, respectively. 400 

4.2. Precipitation fields obtained from various measurement techniques and estimation methods 401 

Daily precipitation accumulations for the flood event of 13-16 September 2024, derived from 402 

various measurement techniques and estimation methods described in this paper (Table 1), are presented 403 

below: (i) reference data from spatially interpolated manual rain gauge observations (Fig. 5), (ii) 404 

precipitation fields operationally available in real time (Fig. 6), and (iii) offline reanalyses (Fig. 7). 405 

A visual assessment of the differences between all the verified data and the reference allows the 406 

following general observations to be formulated. 407 

The GAU and multi-source GRS rain gauge fields accurately reproduce the spatial distribution of 408 

the precipitation field and are consistent with the reference in terms of values. Differences are visible 409 

mainly in the Karkonosze Mountains on the border with the Czech Republic, probably due to the 410 

densities of the GAU Manual and GAU networks (the latter is higher in this area) and the influence of 411 

data from the Czech territory. 412 

In the case of radar-derived fields (RAD and RAD Adj), the precipitation pattern is also well 413 

represented, but the estimate based solely on radar observations (RAD) underestimates values. Radar 414 

data after adjustment with rain gauge measurements (RAD Adj) demonstrates good agreement 415 

concerning precipitation values. 416 

Estimates generated based on satellite data: SAT, H61B and PDIR-Now, reproduce the 417 

precipitation distribution in space very imprecisely and values are significantly lower than the reference. 418 

The IMERG reanalysis definitely represents the precipitation field better, but values are also 419 

underestimated, especially in places where accumulations are highest. 420 

The CML-based estimates represent precipitation variability quite correctly, but the values 421 

compared to the reference are slightly lower. It can be clearly seen that spatial representativity is limited 422 
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due to the lower density of the links in the higher parts of the mountains, such as in the eastern part of 423 

the Kłodzko Valley. 424 

The GRS Clim data are in very good agreement with the reference regarding both spatial 425 

distribution and values, but it should be remembered that they are dependent. GRS Clim reanalyses, like 426 

estimates based on radar observations (RAD, RAD Adj, and GRS), demonstrate more significant 427 

precipitation variability than fields resulting from interpolation of point values. 428 

Estimates based on numerical mesoscale models (ERA5 and WRF) correctly reproduce the 429 

precipitation pattern. However, the ERA5 reanalyses have a very low spatial resolution, so they do not 430 

reflect the fine-scale structures of the precipitation field, and, in addition, the values are more 431 

underestimated than those derived from WRF simulations. 432 

 433 

 434 
Figure 5: Reference fields from manual rain gauges for daily precipitation accumulations from 13-16 September 2024. 435 
Data are limited to the upper and middle Odra river basin area. 436 

 437 
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 438 
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 439 
Figure 6: Precipitation fields available in real time for daily precipitation accumulations from 13-16 September 2024. 440 
Data are limited to the upper and middle Odra river basin area. 441 

 442 

 443 
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 444 
Figure 7: Precipitation fields available offline for daily precipitation accumulations from 13-16 September 2024. Data 445 
are limited to the upper and middle Odra river basin area. 446 

4.3. Verification of daily and hourly precipitation accumulations 447 

Daily precipitation accumulations derived from different measurement techniques and 448 

estimations, listed in Table 1, were verified against point-wise observations from manual rain gauges. 449 

Table 2 summarises the values of the characteristics defined in Section 4.1 and, additionally, the results 450 

for the two statistics, CC and RMSE, are shown in the graphs in Fig. 8. 451 

Most of the analysed data estimate precipitation correctly, in particular the GAU, RAD Adj, and 452 

GRS fields, which exhibit an extremely high correlation coefficient (CC > 0.9), and the differences 453 

between verified and reference values are very low taking into account the magnitude of the rainfall 454 

(RMSE < 15 mm). Therefore, these fields can correctly represent precipitation with high spatial 455 

resolution for operational purposes and subsequent analyses. The best statistics were achieved for the 456 

GRS Clim estimates, but they depend on the reference data. 457 

The ERA5 and WRF simulations performed slightly worse, with CC above 0.7, which suggests 458 

quite good agreement with the reference, but RMSE is already high, above 25 mm. WRF reanalyses 459 

turned out better with CC = 0.77 and RMSE = 25.6 mm. In the case of the RAD and CML fields, the 460 

correlation coefficient is also high (CC > 0.7), but a significant underestimation of precipitation is 461 

evident, as indicated by large RMSE values > 30 mm, with Bias of -25.7 and -20.6, respectively.  462 

The worst results were obtained for the satellite-based estimates: SAT, H61B and PDIR-Now, for 463 

which CC < 0.5 and RMSE > 35 mm, and only slightly better statistics were achieved for the IMERG 464 

estimates (CC = 0.55, RMSE = 33.4 mm). 465 

 466 

Table 2. Values of statistics for daily precipitation accumulations from 13-16 September 2024, against data 467 

from manual rain gauges (GAU Manual) as reference. 468 
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Measurement/estimation 

technique 

Mean 

(mm) 
CC (−) 

RMSE 

(mm) 

RRSE 

(−) 

Bias 

(mm) 

Reference data 

GAU Manual 41.78 - - - - 

Available in real time 

GAU 38.27 0.963 10.40 0.29 -3.50 

RAD 16.07 0.784 38.08 1.06 -25.71 

RAD Adj 36.65 0.956 12.42 0.35 -5.13 

SAT 10.02 0.395 46.06 1.28 -31.76 

H61B 18.77 0.455 39.46 1.10 -23.00 

CML 21.13 0.721 32.74 0.91 -20.65 

GRS 37.94 0.967 10.02 0.28 -3.83 

Available offline 

GRS Clim (dependent) 42.32 0.985 6.29 0.17 0.55 

IMERG 27.15 0.552 33.40 0.93 -14.63 

PDIR-Now 20.23 0.138 42.57 1.18 -21.55 

ERA5 32.63 0.748 26.00 0.72 -9.15 

WRF 30.48 0.759 26.02 0.72 -11.30 

 469 

  470 
Figure 8: Values of CC and RMSE statistics for daily precipitation accumulation from 13-16 September 2024, against 471 
data from manual rain gauges (GAU Manual). 472 

 473 

Further research was conducted to evaluate the usefulness of the investigated data at a higher 474 

temporal resolution – hourly instead of daily. Table 3 shows results analogous to those depicted in Table 475 

2, but the reference in this case are the RainGRS estimates (GRS fields), as measurements from manual 476 

rain gauges are only available as daily accumulations. This data was selected as a benchmark because 477 

the correlation between the two fields (i.e. GAU Manual and GRS) for daily accumulations is the best, 478 

being as high as 0.97 and Bias is as low as -3.6 mm (Table 2). 479 

In terms of the much higher temporal resolution of the measurements and estimates, fewer of them 480 

maintain a correspondingly high reliability. Both the GAU and RAD Adj estimates demonstrated 481 
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excellent results, with CC values exceeding 0.9 and RMSE values of 0.6 mm and 0.3 mm, respectively. 482 

The raw radar data (RAD) also correlates well with the reference, achieving CC of 0.90; however, the 483 

discrepancies between values are larger, resulting in RMSE of 1.1 mm. It is important to note that the 484 

GRS products depend on all three data fields. 485 

Among the other data not involved in multi-source RainGRS combination, relatively high 486 

reliability was preserved by the CML field with the best correlation coefficient (CC = 0.67), but Bias is 487 

significant (Bias = -0.4) even though RMSE is not relatively high (RMSE = 1.1 mm). Model simulations 488 

ERA5 and WRF do not correlate well with the reference (CC = 0.50 and 0.37, respectively), and the 489 

discrepancy in value is large (RMSE are 1.3 and 1.7 mm, respectively).  490 

IMERG analyses proved to be the most reliable satellite-based products compared in this work. 491 

By incorporating multiple precipitation data sources, which takes several months, a correlation with 492 

reference (CC = 0.53) is better than both model simulations but worse than that obtained by rain gauge, 493 

radar measurements, and even CMLs. The statistics for the other satellite-based estimates (SAT, H61B, 494 

and PDIR-Now) turned out to be much worse: CC < 0.26 and RMSE > 1.7 mm, moreover, they 495 

drastically underestimate rainfall (their negative Bias is more than 0.35 mm). 496 

 497 

Table 3. Values of statistics for hourly precipitation accumulations from 13-16 September 2024, against the 498 

RainGRS estimates (GRS) as reference. 499 

Measurement/estimation 

technique 

Mean 

(mm) 
CC (−) 

RMSE 

(mm) 

RRSE 

(−) 

Bias 

(mm) 

Reference data 

GRS 1.05 - - - - 

Available in real time 

GAU (dependent) 1.03 0.906 0.60 0.41 -0.01 

RAD (dependent) 0.49 0.902 1.07 0.70 -0.56 

RAD Adj (dependent) 1.03 0.977 0.29 0.22 -0.01 

SAT (dependent) 0.33 0.256 1.75 1.21 -0.72 

H61B 0.61 0.174 1.70 1.21 -0.44 

CML 0.60 0.673 1.11 0.83 -0.45 

Available offline 

IMERG 0.94 0.529 1.39 0.98 -0.11 

PDIR-Now 0.70 0.114 1.89 1.45 -0.35 

ERA5 1.11 0.497 1.34 0.93 0.06 

WRF 0.94 0.367 1.67 1.20 -0.10 
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4.4. Verification of extreme daily and hourly precipitation accumulations 500 

For effective flood protection, it is important to have accurate values of very high precipitation. In 501 

order to assess the reliability of the measurements and estimations of extreme accumulations, verification 502 

was conducted by introducing a threshold on the minimum reference precipitation value. 503 

The outcome of statistical analysis using as a benchmark daily accumulations from manual rain 504 

gauge measurements (GAU manual) with a threshold for precipitation of 50 mm is presented in Table 4. 505 

The results are clearly worse, as expected, compared to those without a limit on rainfall magnitude (Table 506 

2). Excellent agreement with the reference high precipitation was obtained by rain gauge observations 507 

(GAU) and estimates directly based on measurements (RAD Adj and GRS) for which CC > 0.85 and 508 

RMSE < 25 mm. The estimate based solely on radar data (RAD) correlates quite well (CC = 0.61), but 509 

the values are strongly underestimated (RMSE = 63.8 mm, Bias = -58.1 mm).  510 

All satellite-based data are inconsistent with the benchmark, as indicated by the low correlation 511 

(CC < 0.42) and significant differences in precipitation values (RMSE > 50 mm). The IMERG product 512 

also has low reliability, although it outperformed the other satellite-derived estimates in previous 513 

verifications.   514 

The result of the verification of the CML estimates is quite surprising compared to the earlier ones: 515 

they have a relatively low correlation (CC = 0.30) and a rather high RMSE (53.6 mm). This can be 516 

explained by the non-uniform distribution of transmitting and receiving stations: in the mountains – 517 

where the highest precipitation was recorded – their network is much sparser compared to other areas 518 

(the opposite in the case of rain gauge networks). 519 

The ERA5 and WRF model simulations have similar errors on precipitation values (RMSE ~ 42 520 

mm), but the correlation is a bit better for the WRF model (CC = 0.48), which may be due to the much 521 

higher spatial resolution of this model. In previous verifications (Table 2), models achieved comparable 522 

results regarding both CC and RMSE. The models still outperform satellite-based estimates. 523 

 524 

Table 4. Values of statistics for daily precipitation accumulations from 13-16 September 2024 against data 525 

from manual rain gauges (GAU Manual) as a reference with a threshold for daily precipitation of 50 mm. 526 

Measurement/estimation 

technique 

Mean 

(mm) 
CC (−) 

RMSE 

(mm) 

RRSE 

(−) 

Bias 

(mm) 

Reference data 

GAU Manual 84.38 - - - - 

Available in real time 

GAU 76.90 0.889 16.66 0.53 -7.49 

RAD 26.30 0.614 63.76 2.03 -58.08 

RAD Adj 70.81 0.880 20.18 0.64 -13.57 

SAT 14.43 0.413 75.63 2.40 -69.95 

H61B 28.42 0.283 64.20 2.04 -55.96 
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CML 42.06 0.301 53.58 1.70 -42.32 

GRS 75.89 0.904 16.09 0.51 -8.49 

Available offline 

GRS Clim (dependent) 85.32 0.950 10.03 0.32 0.94 

IMERG 39.75 0.336 54.82 1.74 -44.64 

PDIR-Now 23.49 0.170 68.81 2.19 -60.89 

ERA5 54.33 0.357 43.28 1.37 -30.05 

WRF 56.51 0.479 41.14 1.31 -27.87 

 527 

A similar analysis was conducted, but the reliability of measurements and precipitation estimates 528 

for high precipitation were verified using hourly accumulations instead of daily accumulations. The 529 

results are depicted in Table 5. In this case, the reference dataset consists of RainGRS (GRS) estimates, 530 

applying a threshold for hourly precipitation accumulation of 5 mm, with the assumption that there must 531 

be at least 200 pixels (out of a total of 44,218 pixels) fulfilling this requirement in a given time step. Fig. 532 

9 shows, as an example, the multi-source GRS hyetogram at the Kamienica manual rain gauge location, 533 

which recorded the highest 4-day precipitation accumulation of all stations in the flood area. Only twenty 534 

hourly precipitation accumulations exceeding 5 mm were observed during this period, thus this threshold 535 

can be considered appropriate for verification of high precipitation for this flood event. 536 

 537 

 538 
Figure 9: Hyetogram of 1-hour RainGRS (GRS) estimates at the location of the Kamienica rain gauge station. The red 539 
line indicates the 5-mm threshold of hourly precipitation accumulations. 540 

 541 

In this verification, the statistical results are significantly worse than in Table 3, as correctly 542 

reproducing extremely high hourly precipitation accumulations is challenging. Only GAU, RAD, and 543 

RAD Adj measurements provide relatively reliable results regarding correlation with GRS (CC > 0.50). 544 

As in the previous analyses, the estimate based solely on RAD data gives a significant underestimation 545 

of rainfall (RMSE = 4.3 mm, Bias = -4.1 mm), while for the fields based on rain gauge data, these errors 546 
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are much lower: RMSE for GAU and RAD Adj is 2.5 and 0.8 mm, respectively. However, it is important 547 

to note that the GRS reference depends on all estimates using rain gauge or radar data. 548 

Among the datasets not involved in multi-source RainGRS estimation, none of the correlations 549 

exceed CC = 0.1 except for the CML estimate (CC = 0.27). The values of RMSE and Bias are also high 550 

for them (RMSE > 5 mm, Bias between -4 and -6). 551 

The conclusion of this analysis is that reconstructing extreme precipitation fields with very high 552 

spatial (1-km) and temporal (1-hour) resolution relies primarily on direct rain gauge measurements, 553 

provided there is a reasonably dense network of stations. Radar observations can also yield reliable 554 

results, but they must first be adjusted to rain gauge data. However, these conclusions are limited by the 555 

dependency of the multi-source GRS estimates on GAU, RAD, Rad Adj, and SAT measurement data. 556 

 557 

Table 5. Values of statistics for hourly precipitation accumulations from 13-16 September 2024 against the 558 

RainGRS estimates (GRS) as a reference with a threshold for hourly precipitation of 5 mm. 559 

Measurement/estimation 

technique 

Mean 

(mm) 
CC (−) 

RMSE 

(mm) 

RRSE 

(−) 

Bias 

(mm) 

Reference data 

GRS 7.03 - - - - 

Available in real time 

GAU (dependent) 5.29 0.515 2.46 1.63 -1.75 

RAD (dependent) 2.96 0.630 4.32 2.92 -4.08 

RAD Adj (dependent) 7.02 0.907 0.76 0.57 -0.01 

SAT (dependent) 0.85 0.089 6.60 4.68 -6.19 

H61B 1.21 0.029 6.33 4.41 -5.83 

CML 3.37 0.269 4.28 2.96 -3.66 

Available offline 

IMERG 2.60 0.069 5.16 3.42 -4.44 

PDIR-Now 1.06 0.046 6.40 4.43 -5.97 

ERA5 2.27 0.062 5.24 3.57 -4.77 

WRF 2.38 0.069 5.54 3.84 -4.66 

4.5. Analyses for selected stations 560 

Four stations with manual rain gauges (GAU Manual) were selected to check the consistency of 561 

the precipitation estimated by different techniques and models concerning particular locations for four 562 

days with the highest values during the flood. They are located in different regions of the basin, where 563 

intense rainfall was observed (Fig. 4), moving from west to east of the Sudety: 564 

‒ Szklarska Poręba in the Karkonosze Mountains,  565 

‒ Kamienica in the Śnieżnik Mountains near the Kłodzko Valley (the highest daily as well as 4-566 

day precipitation was observed there during this flood),  567 
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‒ Głuchołazy situated in the foothills of the Opawskie Mountains,  568 

‒ Gołkowice located in the Ostrava Valley.  569 

Table 6 presents accumulations for all verified measurements and estimates for individual days 570 

and the four-day totals in these locations. In Szklarska Poręba and Kamienica, telemetric rain gauges 571 

(GAU) measured daily accumulations very close to the reference rainfall (GAU Manual), while the other 572 

two locations underestimated by about 10-20%. The daily distribution of RAD values indicates good 573 

temporal alignment with the GAU Manual, but a significant underestimation of rainfall is evident. 574 

Adjustment of the radar-based estimates to rain gauge measurements resulted in a significant increase in 575 

RAD Adj values, but they are still lower than the GAU Manual at all locations except Gołkowice. GRS 576 

precipitation accumulations for three stations (Szklarska Poręba, Kamienica and Głuchołazy) are similar 577 

to GAU, i.e. also underestimated in relation to the reference by about 10-20%. At the Gołkowice location, 578 

where there is no telemetric rain gauge, and the GAU values are derived from interpolation, the GRS 579 

estimates are very close to the RAD Adj values and overestimate the benchmark. The GRS Clim 580 

precipitation accumulations best agree with the reference and differ by less than 6%, however, it should 581 

be remembered that they are generated by adjusting GRS products to manual rain gauge measurements. 582 

Estimates based on CML data are significantly lower than the reference, except Szklarska Poręba, 583 

where the density of the microwave link network is relatively high. This underestimation in the other 584 

stations is probably due to the lack of links near them, so values are derived from the interpolation of 585 

slightly more distant links, usually located at lower altitudes, which record less precipitation. 586 

The variability of all satellite-based precipitation in the analysed days does not correspond well 587 

with the daily distribution of the reference. Accumulations are much lower in comparison to values 588 

measured by manual rain gauges. The IMERG reanalyses slightly outperform the others, which is similar 589 

to previous investigations.  590 

Mesoscale model simulations are also underestimated, although the WRF model does so to a lesser 591 

extent. They better reflect the temporal distribution of daily precipitation accumulations and their 592 

magnitudes than satellite data. 593 

 594 

Table 6. Comparison of daily and 4-day precipitation accumulations for 4 selected stations at locations of 595 

manual rain gauges (Szklarska Poręba, Kamienica, Głuchołazy, Gołkowice). 596 

 Station: Szklarska Poręba Station: Kamienica 

Measurement/estimation 

technique 

13 

Sept 

14 

Sept 

15 

Sept 

16 

Sept 
4-day 

13 

Sept 

14 

Sept 

15 

Sept 

16 

Sept 
4-day 

Reference data 

GAU Manual 20.0 123.8 84.9 63.5 292.2 51.1 114.2 254.5 52.7 472.5 

Available in real time 

GAU 21.72 131.15 85.11 50.47 288.45 49.60 120.2 236.82 51.39 458.01 

RAD 10.27 40.51 22.94 12.71 86.43 26.09 27.06 52.08 12.29 117.52 
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RAD Adj 13.57 120.53 69.03 38.96 242.09 48.08 80.08 179.46 40.12 347.74 

SAT 23.22 14.51 7.24 9.30 54.27 9.19 41.90 30.59 5.16 86.84 

H61B 24.63 37.53 78.68 0.42 141.26 23.90 57.44 29.77 6.28 117.38 

CML 29.89 136.66 56.68 36.03 259.26 2.50 22.38 40.24 24.77 89.89 

GRS 20.06 130.96 79.72 47.38 278.12 50.61 118.06 227.15 48.71 444.53 

Available offline 

GRS Clim (dependent) 21.04 130.36 91.76 61.44 304.60 54.92 120.88 249.00 58.24 483.04 

IMERG 31.85 58.41 15.22 14.27 119.75 40.54 61.81 39.81 18.72 160.88 

PDIR-Now 42.00 35.00 31.00 4.00 112.00 29.00 40.00 19.00 11.00 99.00 

ERA5 9.18 41.43 12.75 23.17 86.53 33.51 67.34 82.21 24.69 207.75 

WRF 1.81 65.93 7.43 59.28 134.45 33.69 118.82 95.69 52.53 300.73 

 597 

 Station: Głuchołazy Station: Gołkowice 

Measurement/estimation 

technique 

13 

Sept 

14 

Sept 

15 

Sept 

16 

Sept 
4-day 

13 

Sept 

14 

Sept 

15 

Sept 

16 

Sept 
4-day 

Reference data 

GAU Manual 56.0 158.2 124.3 23.0 361.5 9.7 96.2 118.2 3.8 227.9 

Available in real time 

GAU 51.19 131.35 93.33 26.81 302.68 7.62 90.22 101.27 3.29 202.40 

RAD 19.55 39.66 26.95 9.28 95.44 3.64 49.18 51.86 2.05 106.73 

RAD Adj 53.86 135.36 93.61 28.37 311.20 7.29 111.65 120.89 4.50 244.33 

SAT 3.84 32.80 15.95 4.97 57.56 1.31 39.89 14.55 0.33 56.08 

H61B 10.90 48.14 26.09 3.64 88.77 3.63 52.41 22.20 2.67 80.90 

CML 8.95 34.09 43.32 11.76 98.12 2.50 22.14 63.43 2.11 90.18 

GRS 51.82 133.06 93.40 26.77 305.05 7.96 113.61 118.33 4.26 244.16 

Available offline 

GRS Clim (dependent) 54.89 150.68 116.45 22.55 344.57 10.55 103.73 122.89 4.58 241.75 

IMERG 26.13 74.61 54.68 9.20 164.62 7.77 67.48 77.85 4.48 157.58 

PDIR-Now 15.00 28.00 21.00 5.00 69.00 6.00 39.00 20.00 6.00 71.00 

ERA5 36.01 68.28 122.77 21.64 248.70 17.09 38.64 90.38 4.66 150.76 

WRF 36.25 93.30 88.53 33.80 251.88 11.32 70.32 79.06 10.55 171.25 

 598 

The cumulative precipitation curves obtained from 1-hour accumulations for the same four stations 599 

are shown in Fig. 10. The GAU Manual and GRS Clim data generated with a daily step were not included, 600 

and in consequence, the GRS estimates (see Section 4.3) were taken as a reference to assess the 601 

consistency of temporal distributions of verified precipitation. It can be seen from analyses of the curves 602 

for all four stations that the estimates on which the GRS data depend, i.e. those based on rain gauge and 603 

radar measurements, are similar to each other, although the differences between the reference and the 604 

values derived solely from radars observations are very large. In terms of the independent data, the curves 605 
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for CML and WRF reflect the temporal distribution of precipitation relatively correctly. In contrast, all 606 

satellite-based estimates are highly inconsistent with the reference, taking into account precipitation 607 

variability in time, and among them, the IMERG reanalyses indicate the best temporal alignment, as in 608 

previous investigations. 609 

 610 

  611 
 612 

  613 
Figure 10: Cumulative hourly precipitation accumulations for the four stations from Table 6 for the period 13-16 614 
September 2024. 615 

4.6. Overall assessment of the various rainfall measurement techniques 616 

The evaluation of the results obtained in this study is mainly based on the numerical values 617 

summarised in Tables 2 to 5, where the reliability statistics of the individual measurements and 618 

estimations are shown. The analyses were conducted with daily accumulations from the GAU Manual 619 

(Tables 2 and 4) and 1-hour RainGRS estimates as references (Tables 3 and 5). It should be noted that 620 

the latter depends, to differing degrees, on data involved in multi-source combination GAU, RAD, and 621 

RAD Adj, and to a lesser extent on SAT product. Nevertheless, the proportions between the statistics’ 622 

values are similar using both references. This leads to the conclusion that this dependence has little 623 

influence on the final outcomes, however the following overall assessment does not include findings 624 

from the analysis of the consistency of individual data with the reference dependent on them. 625 
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4.6.1. Rain gauge data 626 

Spatially interpolated telemetric precipitation data (GAU) proved to be very similar to 627 

measurements from manual rain gauges (GAU Manual), but they generally provide slightly lower values 628 

(Tables 2 and 4). The accuracy of the rain gauge observations also remains high if only heavy 629 

precipitation is considered, which is confirmed by the statistics calculated after introducing an 630 

appropriate threshold on the daily accumulations, as can be seen from a comparison of Table 4 and Table 631 

2. 632 

Notably, 76 out of 158 telemetric rain gauges are in the same locations as manual ones in the flood 633 

area. This significantly impacts the reliability statistics calculated for the GAU data as, in the case of an 634 

interpolated field, estimated values strongly depend on the distance to the nearest station. 635 

4.6.2. Weather radar-based data 636 

Weather radars reflect the spatial and temporal distributions of the precipitation field very well, as 637 

evidenced by the very high CC correlation coefficients with the reference presented in all tables, 638 

especially Tables 2 and 4, where the benchmark data are independent of the radar measurements.  639 

Raw radar estimates RAD produced significantly underestimated precipitation values, as indicated 640 

e.g. by the very large Bias values (Tables 2 and 4). Adjusting with telemetric rain gauge data considerably 641 

improves this and makes the corrected radar-based precipitation field (RAD Adj) very close in 642 

precipitation values to both GAU Manual and GRS reference estimates. 643 

Analysing only high precipitation, i.e. after introducing an appropriate threshold on the amount of 644 

daily precipitation accumulation, the results were analogous to the analysis without applying a threshold 645 

(Tables 4 vs 2). This confirms the high reliability of the radar measurements also in the case of heavy 646 

precipitation, however the data without adjustment is subject to a large Bias. 647 

4.6.3. Satellite-based data 648 

The satellite-based real-time SAT and H61B fields, based on the products from the EUMETSAT 649 

NWC SAF and H SAF programmes, turned out to be practically useless for the precipitation estimation 650 

in the case study analysed here. They correlate poorly with reference and significantly underestimate 651 

values of precipitation accumulation (Tables 2 and 3). The primary reason is that they are mainly based 652 

on data from geostationary satellites – the only kind that can be used directly for real-time measurements 653 

at high temporal resolution. Among the more advanced satellite-based precipitation products available 654 

only offline analysed in this work, it can be stated that the PDIR-Now estimates are definitely wrong. 655 

The IMERG reanalysis proved significantly better, although its reliability is also not high. 656 

If the highest daily accumulations are considered by limiting them to values above the threshold 657 

of 50 mm per day, only SAT precipitation based on NWC SAF products shows some agreement with the 658 

reference, although it is weak (Table 4). The correlations of all satellite estimates decrease dramatically 659 

for extreme 1-hour accumulations (Table 5). 660 
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4.6.4. Multi-source estimates 661 

The multi-source GRS estimates are generated by the RainGRS system for the merging GAU, 662 

RAD Adj, and SAT precipitation measurements. The analyses carried out in this study showed that these 663 

fields, among all the verified data available in real time, are in the best agreement with independent 664 

reference observations from manual rain gauges (GAU Manual) (Tables 2 and 4). The metrics are 665 

slightly better than those for spatially interpolated rain gauges, but the multi-source estimates 666 

significantly outperform the others. This results from the combination that utilises the individual inputs’ 667 

positive features (see Sects. 1.2.2 and 3.2.5). 668 

The GRS Clim product, which is a reanalysis of the GRS field obtained by its adjustment with 669 

GAU manual rain gauges, has the best metrics, including when compared to GRS data. In particular, 670 

characteristics related to precipitation values, such as RMSE and Bias, have improved. However, it 671 

should be noted that the precipitation estimates generated by GRS Clim depend on the reference. Their 672 

usefulness is limited by a poor temporal resolution of one day and a long waiting time of two months 673 

due to the quality control of GAU manual data.  674 

4.6.5. CML-based estimates 675 

CML-based estimates correlate relatively well with daily and hourly accumulation benchmarks, 676 

but relatively high errors relate to differences between verified and reference values: RMSE and Bias. 677 

Data estimated from the measurements of signal attenuation from commercial microwave links in 678 

precipitation are clearly better than satellite-derived fields, even those available offline, but they are 679 

worse than estimates based on rain gauge and radar information. Their reliability is similar to mesoscale 680 

model simulations in terms of daily data, however for hourly accumulations the CML-based estimates 681 

outperform them (Tables 2 and 3). This suggests better representativeness in the temporal distribution of 682 

precipitation. 683 

These relatively good statistics for CML-based data are probably because the network of links is 684 

very dense relative to the rain gauge network, which partly compensates for their much higher 685 

uncertainty. However, there are considerably fewer links in the highest, less urbanised mountainous 686 

areas, where precipitation is usually more intense and the detection of extreme precipitation is 687 

consequently subject to more significant errors (Tables 4 and 5). 688 

4.6.6. NWP-based reanalyses 689 

The NWP simulations have higher reliability than satellite data but clearly lower than radar and 690 

rain gauge measurements. Their metrics are similar when analysing daily accumulations (Table 2), 691 

whereas for hourly ones, they turned out worse in comparison with CML-based data (Table 3). 692 

The results obtained by the ERA5 and WRF models are ambiguous. In terms of daily accumulation 693 

investigations, the reliability of both models is comparable. When analysing 1-hour data (Table 3), the 694 

ERA5 reanalyses proved to be better, although their CC is not high, which indicates a more correct 695 
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alignment of the precipitation variability in time. In turn, the WRF model performed better if the highest 696 

daily accumulations were considered, i.e. only above 50 mm per day (Table 4). This is probably due to 697 

the significantly (around 20 times) higher spatial resolution of the WRF model compared to ERA5, which 698 

increases their usefulness for detailed analyses of precipitation more variable in space. When it comes to 699 

extreme hourly precipitation, i.e. with a threshold for precipitation above 5 mm, none of the mesoscale 700 

models are reliable: correlations with the GRS field do not exceed CC = 0.10 for both (Table 5). 701 

5. Conclusions 702 

In this work, detailed analyses were carried out of the reliability of different precipitation 703 

measurements and estimations during a large flood in Poland in 2024 caused by extremely high 704 

widespread precipitation in an orographically diversified basin. 705 

Their consistency was assessed with the precipitation field or point observations assumed to be 706 

closest to reality (ground truth). As a reference, data from manual rain gauges (GAU Manual) were 707 

chosen as they are considered to be the most accurate, but they are point-wise and have the limitation of 708 

a temporal resolution of 1 day. In order to test the usefulness of data with a higher 1-hour temporal 709 

resolution, RainGRS estimates (GRS) were used as a benchmark. In addition, similar analyses were 710 

conducted, but only the most intense precipitation was considered by applying appropriate thresholds 711 

(over 50 mm/day and 5 mm/hour). 712 

Comparing the various precipitation fields available in real time, the data based on telemetric rain 713 

gauge measurements (GAU) and weather radar observations after adjustment with rain gauge data (RAD 714 

Adj), as well as the multi-source estimates (GRS) derived from a combination of these two types of data 715 

supplemented with satellite information, are definitely most reliable. It can be concluded that during 716 

intense precipitation events triggering floods, even in mountainous areas, rain gauge and radar 717 

measurements are sufficient for accurate real-time monitoring of the precipitation field with high spatial 718 

and temporal resolution, even though IMGW’s measurement networks are not very dense compared to 719 

those of other European countries. 720 

Among the other precipitation data sources, CML-based estimates proved to be the most accurate. 721 

This is surprising as they are based on non-standard measurements, but their strength is the very high 722 

number of microwave links available. However, these data show a large underestimation of precipitation, 723 

indicating the need for more sophisticated quality control and unbiasing. 724 

Reliability analyses of satellite data show that they are generally of little usefulness, apart from 725 

the IMERG estimates. Their relatively good agreement with the reference is due to incorporating a higher 726 

number of different types of satellite measurements, mainly microwave. However, this involves long 727 

waiting times for the final estimates which rather excludes them from operational applications, though 728 

they can be helpful in reanalyses. 729 
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The research showed the limited suitability of mesoscale model simulations for analyses with high 730 

temporal and spatial resolution. At the same time, their reliability is sufficient for use when such a 731 

requirement is not necessary. Consequently, they are not particularly useful for analyses of very intense 732 

and spatially variable precipitation. 733 
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